
reprint



Phys. Status Solidi B 252, No. 1, 219–229 (2015) / DOI 10.1002/pssb.201451202 p s s
basic solid state physics

b

st
a
tu

s

so
li

d
i

www.pss-b.comp
h

y
si

ca

The effect of surface roughness and
grain-boundary scattering on the
electrical conductivity of thin metallic
wires
Luis Moraga*,1, Claudio Arenas2,3, Ricardo Henriquez4, and Basilio Solis1

1 Departamento de Ciencias Básicas, Facultad de Ingenierı́a, Universidad Central de Chile, Santa Isabel 1186, Santiago 8330601, Chile
2 Departamento de Fı́sica, Facultad de Ciencias Fı́sicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3,
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We report a new formula for the electrical conductivity of a
thin wire of rectangular cross-section, obtained from an exact
solution of the Boltzmann equation by assuming perfectly
diffuse surface scattering and absence of grain boundaries.
Also, we calculate the electrical conductivity of polycrystalline
metallic wires, both for the case of rectangular and circular
cross-sections and for arbitrary values of Fuchs’ specularity
parameter, by means of a seminumerical procedure that solves
the Boltzmann equation by summing over classical trajectories

in accordance with Chambers’ method. Following Szczyr-
bowski and Schmalzbauer, the scattering by grain boundaries is
represented by a peculiar specularity parameter and a boundary
transmittance. The difference between one and the sum of these
two probabilities measures the probability of diffuse scattering.
We examine the dependence of the conductivity on the values
of these parameters and the effects of disorder on the diameters
of the grains.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Contemporary advances in computer
technology have required increasing the density of memory
and logical circuits. This trend has been possible only at the
cost of diminishing the physical dimensions of the metal-
lic interconnects. However, it has been found that, when the
thickness of a wire is comparable to the mean free path of
the conduction electrons, its electrical resistivity increases
considerably. This results, in turn, in a corresponding aug-
mentation of the thermal dissipation and a propagation delay
in the microcircuit. The effect is complicated by the added
contribution of grain-boundary scattering that seems to be an
undesirable result of the majority of the known fabrication
procedures [1–5].

The obvious technological importance of these facts has
led to a number of experimental studies on the conduc-
tivity of metallic wires. Unfortunately, the wealth of new
data obtained in this way has not been accompanied by

corresponding theoretical progress. In order that decisive
advances are possible it is necessary to find quantitative the-
ories, firmly based on fundamental principles, that allows the
experimenter both to explain the phenomena and to predict
others. It would be useful, for instance, to have a solution of
the Boltzmann transport equation describing the electron’s
distribution function under the combined effects of exter-
nal fields, distributed imperfections, rough external surfaces,
and those of grain boundaries [6]. Alternatively, it would
be equally convenient to have Green’s functions describ-
ing, with enough realism, the behavior of such materials
[7, 8]. Unfortunately, it seems that the totality of fundamental
results known until now can provide only partial answers to
the many questions found in practice. Also, these are more
than half a century old. The electrical conductivity of a thin
wire of circular cross-section was calculated by Dingle [9].
The corresponding result for wires of square cross-section
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220 L. Moraga et al.: The effect of surface roughness on conductivity of thin metallic wires

was obtained by MacDonald and Sarginson [10] for the
special case of completely diffuse surface scattering. Both
theories were published in 1950. (The relevant experimental
work up to 1980 has been reviewed by Sambles et al. [11].)

At the present, the most successful treatment of these
effects is the theory of Mayadas et al. [13]. For instance, if
σg and σ0 denote the conductivities of bulk samples with and
without grain boundaries,

σg

σ0

= 3

[
1

3
− α

2
+ α2 − α3 ln

(
1 + 1

α

)]
, (1)

where α = λR/(D(1 − R)), λ is the bulk value of the mean
free path of the conduction electrons and D is the average
diameter of the grains (or the average distance between grain
boundaries). Here (and hereafter), R denotes the reflectance
of an individual grain boundary. In this paper, Mayadas and
Shatzkes also found a formula for the case of a thin film [13].
Finally, we note that Dimmich and Warkusz have developed
an extension of Mayadas and Shatzkes’ work appropriate for
wires of circular cross-section [15].

However, Szczyrbowski and Schmalzbauer have noted
that, since Mayadas and Shatzkes’ theory relies on a first-
order perturbative procedure, the resulting formulae should
be valid only for high enough values of the barrier transmit-
tance T – or low enough values of the barrier reflectance R

[14].
In this paper, we report results of two different kinds.

First, we derive in detail a new formula giving the electrical
conductivity of a thin wire of rectangular cross-section,
bounded by rough surfaces, and in the absence of grain
boundaries. The formula is our Eq. (2). The solution for
a wire of square cross-section has already been found by
McDonald and Sarginson [10]; while the corresponding
formula for wires of circular cross-section has been pub-
lished by Dingle [9]. The fact that the Boltzmann transport
equation has not been solved for cases more complicated –
and also more interesting – than these (such as, for instance,
thin wires of rectangular cross-section with p �= 0, or wires
bounded by rough surfaces and crossed by grain boundaries)
has not been caused inadvertently but because these solu-
tions simply do not exist in this semiclassical context. As
we show in this paper, the solutions that intend to represent
these cases contain functions that are continuous but that
have derivatives that are discontinuous at almost every point.

The second kind of result is based on the application of
the method of characteristics curves (or Chambers’ method)
for solving the Boltzmann transport equation [16, 17]. The
characteristic function, determining the solution of the trans-
port equation appropriate for a particular case, can be written
as a sum over all possible classical trajectories of a carrier
traversing the material. For a given point in the material and
a given terminal velocity, the number of these trajectories
is often countable infinite. If the sum is performed over all
these trajectories, we obtain the exact solution. The method
we propose here consists in performing the sum over a ran-
dom sample that is finite; but that contains enough trajectories

so that the sample is representative with the required accu-
racy. (This means, depending on the case, to perform the sum
over 50–500 classical trajectories per point.) In this way,
we can calculate approximately the transport properties of
systems with varying complexities. Thus, we present in this
paper quantitative estimates of the effect on the electrical
conductivity of thin wires with different amounts of surface
diffusiveness, of values of transmissibility (or of reflectivity)
of grain boundaries, or having different degrees of disorder
and the net effect of changing the different linear dimensions
in units of the mean free path.

Finally, we apply the theory developed in this paper to a
tentative analysis of the measurements of Steinhögl et al. [1]
of thin copper wires and those of Josell et al. of thin silver
wires [2].

2 Exact results In this section, we report a formula
describing the electrical conductivity σ of a thin wire of
rectangular cross-section, obtained from an exact solution
of the Boltzmann transport equation (4) in the case of per-
fectly diffuse surface scattering (p = 0) and in the absence
of grain-boundary scattering. The formula is:

σ

σ0

= 1 − 3λ

8

(
1

Dx

+ 1

Dy

)
+ 4λ2

5πDxDy

− 6λ

π

∫ π/2

0

dθ cos2 θ sin2
θ

×
{∫ φc

0

dφ exp

(
− Dx

λ sin θ cos φ

)

×
(

−cos φ

Dx

+ sin φ

Dy

+ 2λ
cos φ

Dx

sin φ

Dy

sin θ

)

+
∫ π/2−φc

0

dφ exp

(
− Dy

λ sin θ cos φ

)

×
(

sin φ

Dx

− cos φ

Dy

+ 2λ
cos φ

Dx

sin φ

Dy

sin θ

)}
,

(2)

where σ0 is the conductivity of the bulk, φc = arctan μ and
μ = Dy/Dx is the aspect ratio. (Without losing generality, we
can assume that μ ≤ 1.) A detailed derivation of this formula
is presented in Appendix A.

On the other hand, it can be shown that no exact solu-
tion of the Boltzmann transport equation is possible in the
partially diffuse case p �= 0. We offer a proof of this in
Appendix B.

In Fig. 1, we plot the values of the electrical resistivity
of a thin wire of rectangular cross-section, calculated from
this formula as a function of Dy/λ, for different values of the
aspect ratio. It is seen that it coincides with the MacDonald
and Sarginson result in the case Dx = Dy and with Fuch’s
expression for a thin film of thickness Dy in the opposite
case Dx � Dy [10, 12].

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 1 Effect of the aspect ratio on the electrical resistivity of
a thin wire of rectangular cross-section. μ = Dy/Dx denotes the
aspect ratio.

3 Chambers’ method All theoretical results reported
here are based on the Boltzmann transport equation [18]

− e

m
E · ∂f

∂v
+ v · ∂f

∂r
= −1

τ
(f − f0), (3)

assuming valid the relaxation-time approximation. Here,
f0 = {exp[(E − μ)/kBT ] + 1}−1 is the distribution at ther-
modynamic equilibrium (Fermi–Dirac distribution). As we
are interested in the conductivity, we assume further the valid-
ity of Ohm’s law. Thus, the out-of-equilibrium part of the
distribution f1 = f − f0 is determined by

v · ∂f1

∂r
+ f1

τ
= −e(E · v)

(
−∂f0

∂E

)
. (4)

Heretofore, it has not been possible to obtain a solu-
tion of this equation that takes into account the combined
effects of distributed impurities, surface roughness, and
grain-boundary scattering. However, the method of charac-
teristics seems to offer a promising route for developing a
useful seminumerical procedure that allows to do all this
[17]. In the present context, the method has been developed
by Chambers [16] and has been successfully applied to the
solution of a number of interesting problems.

The method consists in this: The characteristics are the
curves r(t), v(t) – depending on parameter t – that (in this
case) are solutions of the differential equations

dv
dt

= 1

m
F;

dr
dt

= v, (5)

where F is the total force acting on the particle.

Assuming that these curves exist and are real we note
that, along a given characteristic, Eq. (4) transforms into

df1

dt
+ f1

τ
= −e(E · v)

(
−∂f0

∂E

)
. (6)

Thus, a partial differential equation is reduced to an ordi-
nary differential equation. The physical interpretation of this
procedure is that the value of f1, specified initially at t = t0, is
transmitted along the characteristic and determines the value
of this function at the required point r(t), v(t).

In the case of the Boltzmann transport equation, these
characteristics always exist because they coincide with the
classical trajectories. Furthermore, the corresponding ordi-
nary differential equation is of the first order and, thus, can
always be solved by quadrature. In the simplest case defined
by Eq. (6), the solution is

f1 = −eτ(E · v)

(
−∂f0

∂E

) (
1 − Fe−t/τ

)
, (7)

where F is an arbitrary function to be determined by the
boundary conditions, and t can be interpreted as the time
spent by the particle, flying along the classical trajectory, as it
moves between successive interactions with the boundaries.
We describe now how these quantities are computed.

The effects of external fields and that of distributed impu-
rities appear explicitly in the Boltzmann equation, but the
consequences of surface roughness or grain-boundary scat-
tering operate through the boundary conditions. According to
Chambers, these boundary conditions determine the function
Fe−t/τ in Eq. (7) as follows:

(i) Given a point r inside the material and a possi-
ble velocity v, the value of function Fe−t/τ is obtained by
performing a sum over all contributions from the classical
trajectories that end at r, moving in the direction v, and start-
ing either at one of the rough surfaces bounding the sample
or at one of the grain boundaries. Each trajectory may exe-
cute any number of specular reflections at these boundaries or
traverse, without changing its direction, any number of grain
boundaries. Given one of these trajectories, t is the net time
spent performing the classical movement from this initial to
the given final point.

(A particle is specularly reflected at a given surface if the
angle of incidence of its trajectory equals the angle of reflec-
tion; i.e. the tangential component of its velocity remains
unchanged while its normal component is reversed.)

(ii) The effect of surface roughness is described by a
specularity parameter p, which is a number between zero and
one [19]. The specularity parameter measures the probability
that the carrier is specularly reflected at the given surface,
while the balanceq = 1 − pdescribes the probability that the
scattering is completely diffuse and the particle is thereafter
lost to the conduction process.

(iii) Szczyrbowski and Schmalzbauer have extended
Chambers’ method in order to include the effects on the elec-
trical conductivity arising from grain-boundary scattering in

www.pss-b.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 Diagrammatical calculation of the characteristic func-
tion of a periodic array of scattering planes. (a), (b), (c) represent
Eqs. (9), (11) and (13) of the text, respectively. Circles with an
empty interior denote reflectivity parameters. Black circles denote
the same parameters but modified (or renormalized) by repeated
transmissions through other planes.

polycrystalline samples [14]. In this treatment, the scatter-
ing properties of a grain boundary are characterized by two
parameters, a specularity parameter pGB and a transmittance
TGB. As before, the reflectivity pGB measures the probability
that an incoming carrier is specularly reflected at the given
grain boundary, while TGB describe the probability that it
can traverse the boundary without modifying its trajectory.
The remaining probability qGB = 1 − TGB − pGB describes
the carriers that are diffusely scattered at the boundary and are
subtracted from the out-of-equilibrium distribution function.
It is supposed that pGB, qGB, and TpGB are numbers between
zero and one and have, as a first approximation, the same
value for all grain boundaries of the sample.

The simplest possible model for the distribution of grain
boundaries in a real sample consist in representing them by
a set of parallel planes (and parallel, say, to the x–y plane)
located at random points z1, z2, · · ·, zN+1 [13]. The set of dis-
tances Di = zi+1 − zi between these planes can be assumed
to be a random variate, obeying a definite probability distri-
bution.

It is interesting to note that, when the grain boundaries
modeled in this way are equidistant D = Di (that is, there
is no disorder), extend indefinitely in the x–y direction, and
the movement is such that the component vz of the velocity
remains constant (that is, in the presence of an electric, but
not of a transverse magnetic field) the sum over trajectories
prescribed by Szczyrbowski and Schmalzbauer may be per-
formed by hand. Thus, if F+e−t/τ denotes the branch of Fe−t/τ

in the case vz > 0 and 0 ≤ z ≤ D, it is easy to see that

F+e−t/τ = qGBe
−z/τvz

1 − (TGB + pGB)e−D/τvz
. (8)

The remaining branch F−e−t/τ , describing the case
vz < 0, is obtained from this formula by replacing z by
D − z and vz by |vz|. We can show this as follows (Fig. 2).
Let us consider first the sum F0e

−t/τ of all trajectories ending
at z with velocity vz, starting from some grain boundary and

eventually traversing other grain boundaries but without
suffering any reflection along its way. Clearly, this is given by

F0e
−t/τ = qGBe

−z/τvz + qGBTGBe
−(z+D)/τvz

+ qGBT
2
GBe

−(z+2D)/τvz

+ qGBT
3
GBe

−(z+3D)/τvz

+ · · ·

= qGBe
−z/τvx

1 − TGBe−D/τvz
= QGBe

−z/τvx ; (9)

if we define the effective (or renormalized) parameters PGB

and QGB; that is, the true (or bare) parameters pGB and
qGB modified by multiple transmissions through other grain
boundaries,

PGB = pGB

1 − TGBe−D/τvz
; QGB = qGB

1 − TGBe−D/τvz
. (10)

In Fig. 2, this process is symbolized by replacing a circle
with empty interior with a black circle.

Let us consider now the sum over all trajectories that
have suffered exactly one reflection along its way. Excluding
the segments already summed in Eq. (9), this is

F1e
−t/τ =

∞∑
n=1

∞∑
m=0

qGBT
n+m−1
GB pGBe

−[z+(n+m)D]/τvz

=
∞∑

n=1

qGBpGBT
n−1
GB e−(z+nD)/τvz

1 − TGBe−D/τvz

= qGBpGBe
−(z+D)/τvz

(1 − TGBe−D/τvz )2

= QGBPGBe
−(z+D)/τvz . (11)

In the same way, the sum over all trajectories that
have suffered two reflections (excluding those contributions
already summed) is

F2e
−t/τ = QGBP

2
GBe

−(z+2D)/τvz

= qGBp
2
GBe

−(z+2D)/τvz

(1 − TGBe−D/τvz )3
. (12)

Thus, the total sum over all trajectories is

F+e−t/τ

=
∞∑

n=0

Fne
−t/τ

= QGBe
−z/τvx

∞∑
n=0

Pn

GBe
−nD/τvz

= QGBe
−z/τvz

1 − PGBe−D/τvz

= qGBe
−x/τvz

1 − TGBe−D/τvz

[
1

1−pGBe−D/τvz/(1 − TGBe−D/τvz )

]
;

(13)

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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which is exactly result (8). The seminumerical procedure, to
be described presently, confirms this result.

Mayadas and Shatzkes further considered the possibility
of having disorder, in the form of a Gaussian distribution of
grain diameters with mean D and standard deviation s

e(D1, · · · , DN)

= (2πs2)−N/2 exp

[
−

N∑
i=1

(Di − D)2

2s2

]
. (14)

On the other hand, measurements of grain diameters
in actual samples tend to suggest that the the underlying
probability distribution is lognormal instead of normal. In
the following sections, we study the effects of disorder in
some typical cases. We find, in accordance with Mayadas
and Shatzkes’ theory, that the effects are quite small [13].

4 Conductivity of thin wires In this section, we
solve the Boltzmann transport equation by approximating the
sum over all classical trajectories, which define the function
Fe−t/τ in Eq. (7), by summing over a finite random sample
of these paths. Given a point r and a velocity v of a carrier
traversing the wire and belonging to the out-of-equilibrium
distribution f1, the computer calculates a possible classical
path leading to this point by following its history backwards
in time – going through reflections or transmissions at sam-
ple surfaces and grain boundaries – until the point where (by
chance) the particle has been incorporated into f1. Then, the
total flight time t (in units of the time of relaxation τ) is cal-
culated and the result accumulated in order to build F . The
procedure is repeated with other trajectories defined by the
same values of r and v, until sufficient statistics have been
accumulated. Later on, an integration over all possible val-
ues of r and v is performed and the current and, hence the
electrical conductivity, is obtained.

The trajectories (and flight times) are not calculated by
following in detail the path of each particle. Instead, the
computer determines the sequence of critical points; i.e., a
possible point of intersection of the path with one of the sur-
faces of the sample or a grain boundary. For instance, if a
particle happens to be at a point of coordinates x, y, and
z inside a wire of rectangular cross-section, extending from
0 ≤ x ≤ Dx, 0 ≤ y ≤ Dy, and a grain of diameter D, extend-
ing from 0 ≤ z ≤ D, the machine computes the following six
time intervals

t1 = − x

vx

; t2 = Dx − x

vx

;

t3 = − y

vy

; t4 = Dy − y

vy

;

t5 = − z

vx

; t6 = D − z

vz

. (15)

The time interval necessary for reaching the next critical
point is the smallest positive value of these six numbers. Let

Figure 3 Effects of the surface reflectivity p on the electrical resis-
tivity of a thin wire of square cross-section with side 50 nm in the
absence of grain-boundary scattering.

it be ti. The coordinates x′, y′, and z′ of the critical point are

x′ = x + vxti; y′ = y + vyti; z′ = z + vzti. (16)

A similar procedure is followed when treating wires of
circular cross-section.

The next step depends on the value of a random number
generated at this point. If the critical point happens to belong
to a sample surface, a fraction p of the trials the particle
is specularly reflected (meaning that the sign of the normal
component of the velocity is reversed) and the remaining
1 − p fraction of the trials the particle is removed – and a
new trajectory is initiated. If the critical point happens to be
on a grain boundary, a fraction pGB of the trials the particle is
reflected, another fractionTGB of the trials the particle is trans-
mitted without change across the boundary and the remaining
fraction 1 − pGB − TGB of the trials, the particle is removed.
The total flight time is accumulated as t = ∑

i
ti. When the

particle has not been removed, the procedure is iterated by
calculating the occurrence of the next critical point.

In order to distinguish the effect of surface scattering
from that occurring at the grain boundaries, we examine first
the case when the latter is ineffective; that is when pGB = 0
and TGB = 1. (The analysis of experimental data at the end
of this section suggests, however, that, in typical polycrys-
talline wires, the effect of grain scattering is considerable.)
Representative results, where we vary the mean free path on
a wire of square cross-section with Dx = Dy = 50 nm for
different values of the surface reflectivity p, are plotted in
Fig. 3. Comparable results in the case of a thin wire of circu-
lar cross-section are shown in Fig. 4. (In this case, the results
of the seminumerical procedure coincide with those obtained
from Dingle’s formula [9].) MacDonald and Sarginson noted
that the conductivity of a wire of circular cross-section σC

www.pss-b.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4 Effect of the surface reflectivity p on the electrical resis-
tivity of a thin wire of circular cross-section. (Dingle’s theory [9].)

is larger than σS, the conductivity of an identical wire of
square cross-section at equal values of λ in the case p = 0,
even if one scales the radius R to an effective Dx = Dy by
means of Dx = √

πR [10]. In Fig. 5, we have plotted the frac-
tional change (σC − σS)/σS in the general (p �= 0) case. It is
seen that the discrepancies can be as high as 12% at small
thicknesses. This adds weight to an observation of Golledge,
Preist, and Sambles who pointed out that the most important
factor in determining the resistance in such systems is the spe-
cific cross-sectional geometry of a thin wire. In comparison
with this, they concluded, the precise form of the specular-
ity function is largely insignificant. Thus, for instance, it is
not permissible to treat approximately a rectangular wire as
a wire of circular cross-section. Rather it is necessary, for an
adequate theoretical treatment, to model the specific shape
of the actual wire under consideration [20].

We model grain boundaries in thin wires as barriers that
are plane and parallel, oriented perpendicularly to the axis of
the wire and located at the points z = zi. In practice, for wires
that are thin enough, the transversal dimensions of the grains
have been found to be equal to those of the wire. Also, the
distance between adjacent grain boundaries Di = zi+1 − zi is
(roughly) the same as the minimum between the wire’s height
and width [1, 3]. As noted before, these grain boundaries are
described by a reflectivity pGB and a transmissivity TGB. It
is supposed that pGB, TGB, and 1 − pGB − TGB are numbers
between zero and one. Furthermore, we assume that these
numbers uniformly describe all grain boundaries.

In Fig. 6, we plot the resistivity of a thin wire of square
cross-section, in the extreme rough case p = pGB = 0, as
a function of the common transmissibility TGB of the grain
boundaries. We assume that the distances between grain
boundaries are the same for all grains, Di = D; that is, that we
have perfect order. We see that the effects of grain-boundary
scattering are considerable. The corresponding resistivity of
a wire of circular cross-section is shown in Fig. 7.

Figure 5 Fractional difference (σC − σS)/σS between the conduc-
tivity σC of a thin wire of circular cross-section with radius R =
Dx/

√
π and the electrical conductivity σS of an identical thin wire

of square cross-section with sides Dx = Dy, for different values of
the surface reflectivity p.

Furthermore, we investigate the effects of disorder on
the resistivity of a thin wire. This is done by assuming a
lognormal distribution of grain diameters Di with mean D

and standard deviation s. In Fig. 8, we plot the fractional
changes of the wire resistance as a function of the degree
of disorder s and the length of the mean free path. It is seen
that the effect is small. This accords with Mayadas and
Shatzkes’ theory, where it was concluded that the effect of s

is measured in the scale of the wavelength of the conduction
electron (or in the inverse of the Fermi wave vector kF) as a

Figure 6 Effect of transmissibility of grain boundaries TGB on the
electrical resistivity of thin wires of square cross-section (Dx =
Dy = D = 50 nm) in the case of completely diffuse scattering p =
pGB = 0.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 7 Effect of the transmissibility of grain boundaries TGB on
the electrical resistivity of wires of circular cross-section of radius
R equal to 50 nm in the case of completely diffuse scattering p =
pGB = 0.

factor of the order exp(−k2
Fs

2) – which is negligible for most
metals [13].

Finally, we apply the formalism developed here to a
tentative interpretation of the electrical conductivity of two
recently published measurements on thin wires. The first
refers to 230 nm height Cu wires, as reported in Fig. 8 of
a paper by Steinhögl et al. [1]. Following these authors, we
assume the grain size D to be equal to the wire width if Dx is
smaller than 400 nm, and saturates at this value (about twice
the height of the wire) if Dx > 400 nm; and that that the bulk
resistivityρ0 = 2.00 � � cm. The resulting fit is illustrated in
Fig. 9. We find that a satisfactory description can be obtained

Figure 8 Effect of disorder on the fractional resistivity change of
a thin wire of square cross-section with Dx = Dy = D = 50 nm. We
assume a log–normal distribution of the distances between grain
boundaries with mean D and standard deviation s.

Figure 9 Tentative fit of the theory of this work to data of
Steinhögl et al. on the dependence on width of the resistivity of thin
Cu wires of rectangular cross-section with height equal to 230 nm.
(Fig. 8 of Ref. [1].) p = 0.9; pGB = 0.4; TGB = 0.4; ρ0 = 2.0 � � cm;
λ = 150 nm.

by assuming a bulk value of the mean free path λ = 150 nm,
that p = 0.9, pGB = 0.4, and TGB = 0.4. In Fig. 10, we plot a
corresponding fit of the electrical resistivity of thin Ag wires
200 nm hight, as reported in Fig. 5b of a paper by Josell et al.
[2]. Following these authors, we assume that the grain spac-
ing is the minimum of the height and width of the wire, that
the bulk mean free path is λ = 57 nm and ρ0 = 1.6 � � cm.
It is seen that a good fit is obtained by taking p = 0, pGB = 0,
and TGB = 0.

5 Conclusions We report here a new and explicit
formula for the electrical conductivity of a thin wire of rect-

Figure 10 Tentative fit of the theory of this work to data of Josell
et al. on the dependence on width of the resistivity of Ag thin wires
of rectangular cross-section with height equal to 200 nm. (Fig. 5b
of Ref. [2].) p = 0; pGB = 0; TGB = 0; ρ0 = 1.6 � � cm; λ = 57 nm.
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angular cross-section with perfectly diffusive surfaces and
in the absence of grain-boundary scattering. The general
case, for wires of rectangular or circular cross-section, is fur-
ther treated by means of the well-known Chambers’ method;
except that we approximate the exact procedure by summing
only over a finite random sample of the infinite number of
possible classical trajectories. This can be done to any desired
accuracy. Our formulation starts from an exact solution of
the Boltzmann transport equation and can treat wires of any
width and shape, including the effects of surface roughness
and grain boundaries.

As an aside, we have also shown that – except for
some exceptional cases – analytical solutions of the Boltz-
mann equation do not exist for thin wires. This fact throws
additional light on the physical significance of the present
procedure. Had we performed a summation over the count-
able infinite set of classical trajectories, as prescribed by
the original Chambers’ formula, we would have obtained
an exact, albeit singular, solution. By summing over a finite
number of trajectories we obtain a solution that is regular,
but that is only approximate. This can be done within any
prescribed accuracy as long as we do not pretend that this
accuracy is perfect.

However, it is clear that the lack of existence of the
solution of the transport equation is interesting, but not of
fundamental importance. This depends on the fact that a
transport coefficient obtained from a calculation based on
the Boltzmann equation is, in itself, an approximation to a
quantum reality that should find its fundament, for instance,
in the Kubo formula [6, 7]. If we take the latter type of solu-
tion as a starting point and seek its semiclassical form, we
find a function in the shape of the corresponding solution of
the transport equation, but with perfectly regular analytical
properties [8, 21]. Thus, the irregularities of the solution of
the Boltzmann equation are only an artifact of this particular
approximation, without any counterpart in reality. Accord-
ingly, the proper way to ascertain the significance of the
seminumerical procedure we present here is to consider it
as an approximation with the same standing as others, whose
validity should be gauged independently of them – and that
is, perhaps, preferable since it provides answers where others
fail to do so.
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Appendix A: The electrical conductivity of a wire
of rectangular cross-section in absence of grain-
boundary scattering The electrical conductivity of a
thin metallic wire of square cross-section and bounded by
completely rough surfaces has been calculated by McDon-
ald and Sarginson [10]. Assuming that the applied electric
field points in the z-direction, E = Eẑ, that the wire extends
from 0 ≤ x ≤ Dx, 0 ≤ y ≤ Dy and that it is very long in the

z-direction, it is seen that the out-of-equilibrium fraction f1

of the electronic distribution function satisfies the Boltzmann
transport equation (4)

vx

∂f1

∂x
+ vy

∂f1

∂y
+ f1

τ
= −eEvz

(
−∂f0

∂E

)
. (A.1)

The solution of this equation can be written in two alter-
native forms

f1 = −eEvz

(
−∂f0

∂E

) [
1 − Fx

(
y

vy

− x

vx

)
e−x/τvx

]

= −eEvz

(
−∂f0

∂E

) [
1 − Fy

(
x

vx

− y

vy

)
e−y/τvy

]
,

(A.2)

where Fx and Fy are two arbitrary functions of the arguments
shown. The only reasonable boundary condition for which it
is possible to determine these functions is that of completely
diffuse surface scattering; prescribing that f1 vanishes at x =
0, x = Dy, y = 0, and y = Dy. Thus, Fx and Fy have to be
such that the solution has the form

f1 = −eEvz

(
−∂f0

∂E

) (
1 − e−d/λ

)
; (A.3)

where λ is the mean free path and d is the distance – measured
along the direction fixed by the velocity vx, vy, vz – between
an internal point with coordinates x, y, z and the nearest
boundary.

Thus, the average electric current j, flowing in the z-
direction, is

j = − 2e

DxDy

( m

2π�

)3
∫ Dx

0

dx

∫ Dy

0

dy

∫
vzf1d

3v

= 3σ0

4πDxDy

E

∫ π

0

dθ cos2 θ sin θ

×
∫ 2π

0

dφ

[∫ Dx

0

dx

∫ Dy

0

dy
(
1 − e−d/λ

)]
; (A.4)

where vx = v sin θ cos φ, vy = v sin θ sin φ and vz = v cos θ.
Here, σ0 denotes the electrical conductivity of the bulk mate-
rial, and

σ0 = Ne2λ

mvF

; with N = 8π

3

(mvF

2π�

)3

. (A.5)

The electrical conductivity σ of the thin wire is defined
by Ohm’s law j = σE; that is

σ

σ0

= 1 − 3

4πDxDy

∫ π

0

dθ cos2 θ sin θ

×
∫ 2π

0

dφ

[∫ Dx

0

dx

∫ Dy

0

dye−d/λ

]
. (A.6)
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Without losing generality we can suppose that Dx ≥ Dy,
so that the aspect ratio is μ = Dy/Dx. On the other hand, we
note that the possible values of the distance traversed d are

d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x/v̂x;

(Dx − x)/v̂x;

−y/v̂y;

(Dy − y)/v̂y,

(A.7)

where v̂x = sin θ cos φ, v̂y = sin θ sin φ are components of a
unit vector pointing in the direction of the velocity. In fact, the
value of d as a function of x, y is the least non-negative quan-
tity of those appearing in the right-hand side of Eq. (A.7).
Thus, the integrals over x and y are computable by hand,
with the result

1

DxDy

∫ Dx

0

dx

∫ Dy

0

e−d/λdy

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
[∣∣∣ v̂x

Dx

∣∣∣ +
∣∣∣ v̂y

Dy

∣∣∣ − 2λ

∣∣∣ v̂x

Dx

∣∣∣ ∣∣∣ v̂y

Dy

∣∣∣
+Ex

(
−

∣∣∣ v̂x

Dx

∣∣∣ +
∣∣∣ v̂y

Dy

∣∣∣ + 2λ

∣∣∣ v̂x

Dx

∣∣∣ ∣∣∣ v̂y

Dy

∣∣∣)]
if |v̂y|/|v̂x| < Dy/Dx = μ;

λ
[∣∣∣ v̂x

Dx

∣∣∣ +
∣∣∣ v̂y

Dy

∣∣∣ − 2λ

∣∣∣ v̂x

Dx

∣∣∣ ∣∣∣ v̂y

Dy

∣∣∣
+Ey

(∣∣∣ v̂x

Dx

∣∣∣ −
∣∣∣ v̂y

Dy

∣∣∣ + 2λ

∣∣∣ v̂x

Dx

∣∣∣ ∣∣∣ v̂y

Dy

∣∣∣)]
if |v̂y|/|v̂x| > Dy/Dx = μ;

where

Ex = exp

(
− Dx

λ|v̂x|
)

, Ey = exp

(
− Dy

λ|v̂y|
)

. (A.8)

In consequence, the electrical conductivity is

σ

σ0

= 1 − 6λ

π

∫ π/2

0

dθ cos2 θ sin2
θ

×
{∫ φc

0

dφ

[
cos φ

Dx

+ sin φ

Dy

− 2λ
cos φ

Dx

sin φ

Dy

sin θ

+Ex

(
−cos φ

Dx

+ sin φ

Dy

+ 2λ
cos φ

Dx

sin φ

Dy

sin θ

)]

+
∫ π/2

φc

dφ

[
cos φ

Dx

+ sin φ

Dy

− 2λ
cos φ

Dx

sin φ

Dy

sin θ

+ Ey

(
cos φ

Dx

− sin φ

Dy

+ 2λ
cos φ

Dx

sin φ

Dy

sin θ

)]}
;

(A.9)

with tan φc = μ. Some of the integrals over the angles are
elementary and can be performed analytically. By a final
change of variable from φ to (1/2)π − φ in the last integral,
we obtain Eq. (2).

It is found that the direct numerical integration of Eq. (2)
is unstable at small values of the aspect ratio. Thus, it is
preferable to calculate the electrical conductivity of thin
wires of rectangular cross-sections in terms of the functions
K̃in defined by

K̃in(x) =
∫ ∞

1

√
u2 − 1e−xu

du

un
; (
e x > 0). (A.10)

This function is a repeated integral of the modified Bessel
function K1(x) [22]

K̃i1(x) =
∫ ∞

x

K1(t)

t
dt; (A.11)

K̃in(x) =
∫ ∞

x

K̃in−1(x)dt; (n = 2, 3 · · ·). (A.12)

The formula for the electrical conductivity is

σ

σ0

= 1 − 3λ

8

(
1

Dx

+ 1

Dy

)
+ 4λ2

5πDxDy

− 6λ

π

×
{∫ φc

0

[(
−cos φ

Dx

+ sin φ

Dy

)
K̃i5

(
Dx

λ cos φ

)

+ 2λ
cos φ

Dx

sin φ

Dy

K̃i6

(
Dx

λ cos φ

)]
dφ

+
∫ π/2−φc

0

[(
sin φ

Dx

− cos φ

Dy

)
K̃i5

(
Dy

λ cos φ

)

+ 2λ
cos φ

Dx

sin φ

Dy

K̃i6

(
Dy

λ cos φ

)]
dφ

}
. (A.13)

These functions can be explicitly calculated by using the
formulae

K̃i6(x) = 1

120

[
(x5 − 10x3 − 15x)Ki1(x)

− (x5− 9x3 − 16x)K1(x) + (x4 − 7x2)K0(x)
]
;

K̃i5(x) = 1

24

[−(x4 − 6x2 − 3)Ki1(x)

+ (x4 − 5x2)K1(x) − (x3 − 3x)K0(x)
]

;

(A.14)

in terms of the modified Bessel functions K0(x) and K1(x)
and the Bickley (or Bickley–Naylor) function [22]

Ki1(x) =
∫ ∞

x

K0(t)dt. (A.15)

A copy of a program (in FORTRAN) that returns the
value of electrical conductivity, as given by Eq. (A.13), may
be obtained from the corresponding author.
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Figure 11 In a neighborhood of a corner of the enclosure the char-
acteristic F function is continuous (with the shape of an inverted
cusp) while its derivative with respect to the lateral arc length s has
a finite discontinuity.

Appendix B: Solution of the Boltzmann equa-
tion for partially diffuse surface scattering In this
appendix we investigate in detail the way in which the solu-
tion of the Boltzmann transport equation (4) exists for the
case p = 0; but fails to do so when p �= 0.

In the completely diffuse case p = 0, the characteristic
function is Fe−t/τ = e−d/λ, where d is the distance to the near-
est boundary point. This is illustrated in the insert in Fig. 11

Figure 12 (a) Inside a partially reflecting enclosure (section of a
grain or of a thin wire of rectangular cross-section) the path of a
carrier may be subject to multiple reflections (Fig. 8 of Josell et al.
[2]). (b) In a repeated section schema, the trajectory appears as a
straight line. If prolonged long enough, the line will pass arbitrarily
near some corner.

for a given point internal to a thin wire of rectangular cross-
section – or, alternatively, a point inside a grain limited by
perfectly diffuse grain boundaries. If we plot e−d/λ as a func-
tion of the lateral arc length s, we note that it has the shape of
an inverted cusp in the neighborhood of each point where the
boundary suddenly changes its direction. Near each of these
corner points, the characteristic function is continuous, but
its derivative with respect to s has a finite discontinuity.

In the case p = 0 and for a given internal point, these sin-
gularities are isolated and constitute a set of measure zero.
But the situation is radically changed when p �= 0. As shown
in Fig. 12a, trajectories with repeated reflections at the bound-
aries are then possible. It is useful to plot the same trajectory
in a repeated section schema. As shown in part (b) of the
same figure, the trajectory is now a straight line. It is obvious
(except for the isolated cases of perfectly horizontal or ver-
tical directions) that – if this line is prolonged long enough –
it will pass arbitrarily near one of the repeated images of
the corner points. Since the characteristic function contains
in this case trajectories of all lengths, it is seen that it will
have a cusp-like singularity in each direction. Thus, we con-
clude that, when p �= 0, the characteristic function (and, thus,
the solution of the Boltzmann transport equation) is contin-
uous with discontinuous derivatives for almost every value
of v̂.
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