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We calculate the electrical conductivity of a metallic sample under the effects of distributed impurities
and a random distribution of grain boundaries by means of a quantum mechanical procedure based on
Kubo formula. Grain boundaries are represented either by a one-dimensional regular array of Dirac delta
potentials (Mayadas and Shatzkes model) or by its three-dimensional extension (Szczyrbowski and
Schmalzbauer model). We give formulas expressing the conductivity of bulk samples, thin films and thin
wires of rectangular cross-sections in the case when the samples are bounded by perfectly flat surfaces.
We find that, even in the absence of surface roughness, the conductivity in thin samples is reduced from
its bulk value. If there are too many grain boundaries per unit length, or their scattering strength is high
enough, there is a critical value Rc of the reflectivity R of an individual boundary such that the electrical
conductivity vanishes for R Rc> . Also, the conductivity of thin wires shows a stepwise dependence on R.
The effect of weak random variations in the strength or separation of the grain boundaries is computed
by means of the method of correlation length. Finally, the resistivity of nanometric polycrystalline
tungsten films reported in Choi et al. J. Appl. Phys. (2014) 115 104308 is tentatively analyzed by means of
the present formalism.

& 2015 Published by Elsevier B.V.
1. Introduction

The continuous progress of modern semiconductor industry
has resulted in a progressive shrinkage of the linear dimensions of
the electronic components. The dimensions of the thin films and
wires that constitute the building materials of the devices now
reach nanoscale sizes, which are not only smaller than the elec-
tronic mean free path λ of the carriers but are such that quantum
size effects begin to become important [1].

The electrical resistivity of large samples has been found to be
independent of size and shape. But, when one of its linear di-
mensions becomes comparable with the mean free path of the
conducting electrons, the resistivity increases over its bulk value.
This effect has been explained by Fuchs [2] and Sondheimer [3]
(FS) in terms of diffuse scattering occurring at the boundaries of
the film. The theory is based on an appropriate solution of the
Boltzmann transport equation and is, thus, semiclassical in nature.
When data is interpreted in terms of this formalism, the only
cias Básicas, Facultad de In-
186, Santiago 8330601, Chile.

. Moraga).
unknown parameter is p — the fraction of electrons that are
specularly scattered at the film surfaces. The FS formula for the
conductivity FSσ is
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where t is the thickness of the film and s0 is the conductivity of a
bulk sample of identical composition.

Similar explanations have been found for the increase in the
electric resistivities of thin wires of circular cross-section [4] and of
square cross-section in case of completely diffuse surface scatter-
ing [5]. (For many years it was believed that the formalism of
Chambers [6] — which is known to be equivalent to solving the
Boltzmann transport equation — could be used for obtaining for-
mulas expressing the resistivity of wires of arbitrary shapes and
surface reflectivities. But this conjecture is now known to be er-
roneous [7].)

Further measurements on thin films and wires of increased
purity did show that the electrical resistivity increases beyond the
predictions of the FS theory. Mayadas and Shatzkes (MS) attrib-
uted this additional resistivity to scattering of electrons by grain
boundaries [8]. According to this theory, the electrical conductivity

MSσ of a bulk sample with average grain diameter d and mean free
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path λ is (in units of s0, the conductivity of an identical sample
having no grain boundaries)
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and where the parameter R denotes the reflection coefficient of a
single grain boundary.

Furthermore, Mayadas and Shatzkes obtained a second formula
describing the electrical conductivity of a polycrystalline thin film.
This expression is similar in the form to FS formula, except that the
unperturbed mean free path is incremented by an angle-depen-
dent quantity that describes the additional scattering taking place
at the grain boundaries. Again, the relevant parameter is the re-
flectivity R [8].

The conductivity MSSσ predicted by this formula is
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For a long time, these formulas were the only tools possessing
firm theoretical foundations that the experimenters could use in
order to interpret their results. For lack of anything better, a
number of semi-empirical formulas were also proposed and used
[9–11]. Thus, the electrical conductivity of thin films of copper
[12], gold [13] and tungsten [14] was measured, together with
their respective thicknesses and grain diameters. It was found that
the measurements of Cu films could be adequately interpreted by
a combination of Eqs. (1) and (2), according to Matthiessens' rule
[12]. On the other hand, it was determined that the dependence of
the resistivity of Au films [13] on thickness and grain diameters
was better explained by means of MS formula (4). Finally, Choi
et al. tried to interpret the resistivities of thin W films by means of
these methods, concluding that they were essentially equivalent in
this case and that both resulted in systematic deviations from the
experimental values [14].

The electrical conductivity of thin polycrystalline wires of gold
[15], copper [10,11,16], and silver [7] was also measured for a
number of thicknesses and grain diameters. Here, the lack of any
formalism corresponding to (2) and (4) was most sorely felt. Josell
et al. [7] noted that the many formulas employed in this connec-
tion were not equivalent. Furthermore, their purported justifica-
tion in terms of Chambers' method [6] was shown to be erroneous
[7].

Recently, a semi-numerical procedure for calculating the com-
bined effects of surface roughness and grain boundaries on the
conductivity of polycrystalline metallic films has been published
[17]. The method is essentially equivalent to using an exact solu-
tion of the Boltzmann transport equation. By means of this for-
mulation, it was possible to obtain tentative fits of the measure-
ments of Steinghögl et al. of thin Cu films [16] and Josell et al. of
thin Ag wires [7].

When solving the Boltzmann transport equation, the effects of
the scattering by distributed impurities may be taken into account
by fixing the time of relaxation, whilst those of diffuse surface
scattering may be accounted by choosing appropriate boundary
conditions. However, the contribution of grain boundaries cannot
be adequately described by either of these procedures. In the
formalism of MS, grain boundary scattering is represented by the
transition probability of scattering between two momentum
states, calculated by first-order perturbation theory [8]. Thus, it
appears that the theory can adequately describe the facts only for
small enough values of R, the reflection coefficient of an individual
grain boundary. Indeed, the analysis of thin film data made by
Henriquez et al. [13] suggests that the corresponding MS formula
is reasonably accurate only for values of R that do not exceed ≃0.3.

Fortunately, the combined effects of distributed impurities and
a regular array of grain boundaries can be accounted for at all
orders of perturbation theory by means of a procedure that is
quantum throughout. The purpose of the present work is to ex-
tend the ideas developed in Ref. [18]. In this paper we compute the
effects of grain boundaries on the electrical conductivity of bulk
samples and thin films and wires by means of the Kubo formula.

In the formalism of Kubo [19], the electrical conductivity s is
given by
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where �e and m are the charge and mass of the carriers, re-
spectively, V is the volume of the sample and G r r,( ′) is Green's
function appropriate for each case. For instance, it is customary to
account for the effects of distributed impurities by adding an
imaginary part to the Fermi energy — or to the Fermi wave vector
kF — as the quantum analogue of the mean free path λ [20]. By
inserting into (6) Green's function for an infinite system
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one obtains, for the conductivity of a bulk sample,
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This coincides in the form with the well known Sommerfeld–
Drude prescription [21]
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if we identify the real part of kF with the observed value of the
Fermi wave vector kF

¯ and its imaginary part as Ik 1/2F λ= [22].
2. Grain boundaries and bulk conductivity

Excluding many-body effects, Green's function is the solution of
the inhomogeneous Schrödinger equation
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that is symmetrical in its arguments G Gr r r r, ,( ′) = ( ′ ) and satisfies
appropriate conditions at the boundaries of the sample. Here

k m/ 2F F
2 2= ( ) is the Fermi energy (kF is the Fermi wave vector)

and V r( ) is an effective potential to be chosen in order to ade-
quately model the effects of grain boundaries.

As a first approximation, Mayadas and Shatzkes noted that
grain boundaries may be roughly classified as being oriented
parallel or perpendicular to the applied electric field E. Therefore,
since the parallel barriers are encountered mainly at grazing in-
cidences and, thus, do not contribute much to the scattering of the
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carriers, it is plausible to neglect their effect entirely. The problem
is thus reduced to the scattering from an array of plane barriers
perpendicular to the direction of the electric field (which we take
to be the x-axis). For simplicity, Mayadas and Shatzkes considered
these barriers to be in the form of Dirac delta potentials with equal
strengths S m/22 . Furthermore, the barriers were supposed to be
uniformly distributed, with a separation equal to the average grain
diameter d. This can be justified a posteriori since, as a result of
Mayadas and Shatzkes procedure, the fluctuation s in the dis-
tribution of grain diameters contributes to the conductivity with
terms of the order s kexp F

2 2( − ) and is, thus, negligible for normal
metals [8].

In this way, the quantum counterpart to the Maydas and
Shatzkes model is obtained by taking the potential V r( ) in (10) to
be

V x S m x nd/2 .
11n N

N

/2

/2
2∑ δ( ) = ( ) ( − )

( )=−

In practice, N is a very large number. In the limit when N tends to
infinity, this is an example of the well-known Kronig–Penney
potential [23].

In the case of bulk samples, the system is uniform in the y- and
z-directions, so we can write
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⊥ and g k x x; ,( ′) is a one-dimensional Green's
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The Kubo formula (6) simplifies considerably if written in terms
of g. The result is
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where L¼Nd.
Further simplifications depend on the specific form of Green's

function for the Kronig–Penney potential g k x x; ,( ′). We find that
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where x< is the smaller quantity between x and x′ while x> is the
greater of the two.

The (un-normalized) wave function x;ψ ξ( ) is
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where xmθ ( ) is a function that is equal to one if md x m d1< < ( + )
and zero otherwise. Finally, the relationship between k and the
Kronig–Penney parameter ξ is

kd
S
k
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It is important to note that these formulas can be derived by
means of a purely algebraic procedure that does not require that
the hamiltonian be Hermitian. This is shown in detail in Appendix
A of Ref. [18].

Inserting this into the Kubo formula, we find that in this case
the electrical conductivity is
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and where Rξ and Iξ are, respectively, the real and imaginary parts
of the Kronig–Penney parameter ξ. Similarly, kR and kI are the real
and imaginary parts of k. Appendix B of Ref. [18] contains the
explicit derivation of this formula.

We note that the dependence on R of the conductivity de-
scribed by the present formalism is qualitatively different from
that prescribed by the MS theory [8]. This is shown in Fig. 1 for
values of kF appropriate for ordinary metals. We note further that
the results of greatest interest occur at low enough values of kFd.
An example of this is shown in Fig. 2. It is seen that the con-
ductivity changes abruptly each time a band of allowed states
becomes unavailable as the reflectivity R is increased. Finally, if no
allowed state remains, the conductivity vanishes for all values of R
greater than a critical value. Clearly, these are genuine quantum
phenomena, quite beyond the predictive powers of a semiclassical
theory.
3. Model of Szczyrbowski and Schmalzbauer

Assuming that the detailed shape of the individual grains that
constitute a polycrystalline sample is less important than its vo-
lume and relative disposition, Szczyrbowski and Schmalzbauer
(SS) generalized the model of Mayadas and Shatzkes by re-
presenting grain boundaries by three arrays of planar potentials
perpendicular to the x-, y- and z-axes [24]. In a quantum treat-
ment, this is equivalent to taking
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m
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as the potential in the Schrödinger equation (10), instead of Eq.
(11).

In this case, we find that Green's function is given by
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instead of (12). The coefficients An are



Fig. 1. The electrical conductivity of a bulk sample with grain boundaries re-
presented by a one-dimensional regular array of Dirac deltas with separation d, in
units of the conductivity of an identical sample having no grain boundaries, ac-
cording to the quantum theory [Eq. (19) of this paper] compared to Mayadas and
Shatzkes semiclassical expression — Eq. (10) of Ref. [8]. In both cases
k d i15 2.5F = + .

Fig. 2. The electrical conductivity of a bulk sample with grain boundaries re-
presented by a one-dimensional regular array of Dirac deltas with separation d, in
units of the conductivity of an identical sample having no grain boundaries ac-
cording to the quantum theory [Eq. (19) of this paper].

Fig. 3. The electrical conductivity of a bulk sample with grain boundaries re-
presented by a three-dimensional regular array of Dirac deltas with separation d, in
units of the conductivity of an identical sample having no grain boundaries, ac-
cording to the quantum theory [Eq. (26) of this paper].
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for a given ξ. (For simplicity, we assume in this paper that
d d d dx y z= = = . The extension to the general case may be ob-
tained without difficulty.)

Proceeding as before, we find that in the SS model the electrical
conductivity is given by
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instead of (19). Here, due to the separability of the problem, I is
still given by Eq. (20). Also, as before, the sums should be
computed only over those values of kn n,y z that lie inside an allowed

band and such that k k kn n F,
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In Fig. 3 we show some examples of evaluating Eq. (26). It is
seen that, at equal values of all the relevant parameters, the con-
ductivity prescribed by this model is (apart from some differences
in shape) smaller than the corresponding value obtained from Eq.
(19). This is expected because, as a consequence of the additional
confinement, the number of states available at a given energy in
the SS model is smaller than in the model of MS. Since this will be
the case for any treatment that is more realistic than Mayadas and
Shatzkes' model, any data that is interpreted by means of MS
formalism will result in a value of R that is smaller than the true
one.
4. Thin films with smooth surfaces

In this section we consider the effects of grain boundaries in
the electrical conductivity of a thin film of thickness t. In order to
disentangle these effects from those arising from surface rough-
ness or other surface defects, we shall treat here only the case of
perfectly smooth boundaries. Usually, it is assumed that perfect
surfaces scatter carriers elastically and, thus, do not change the
conductivity from its bulk's value [2]. But, at the scales where
quantum effects are important, the added effects of confinement
limit the number of states available when performing the integral
in Eq. (6), resulting in a further reduction of the electrical
conductivity.

This can be shown as follows. Let us suppose that the sample
extends from z¼0 to z¼t and is of indefinite extent in the x- and
y-directions. As in Mayadas and Shatzkes model, grain boundaries
are represented by a regular array of barriers oriented perpendi-
cularly to the x-axis. Thus, Green's function for this case is
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instead of (12) and (14). As a consequence of the separability of
this problem, Green's function is still given by Eq. (16).

Proceeding as before, we find that in this case that the electrical
conductivity is given by
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instead of (19). Here, I is given by Eq. (20). In Appendix A we give
an alternative proof, in which this formula is obtained in the limit
of zero roughness amplitude.

Typical conductivity versus reflectivity curves are shown in
Fig. 4 for the case when film thicknesses coincide with their re-
spective grain diameter. It is seen that, as a general rule, the
conductivity of a thin film is smaller than the bulk value at equal
kF
¯ , λ and R. This is the case even if the film's surfaces are perfectly
smooth.

It is further observed that the derivative of this function
changes discontinuously when an allowed band is suppressed as R
increases. This phenomenon is best illustrated at low enough va-
lues of kFd. (Of course, this effect would be scarcely visible in
simple metals, which have Fermi wavelengths Fλ of the order of
0.5 nm.)
5. Thin wire of rectangular cross-section

We consider now a wire of rectangular cross-section y D0 y≤ ≤ ,
z D0 z≤ ≤ and very long in the x-direction. The effect of grain

boundaries is again described by means of the Mayadas and
Fig. 4. The electrical conductivity of a thin film of thickness twith grain boundaries
represented by a one-dimensional regular array of Dirac deltas with separation d, in
units of the conductivity of a bulk sample having no grain boundaries, according to
the quantum theory [Eq. (30) of this paper]. In this figure, thickness t is assumed to
be equal to d.
Shatzkes model. Again, we consider here only the case of perfectly
smooth surfaces. It is seen that the appropriate Green's function is
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The electrical conductivity is given by
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Here, the sum is performed only over those values of n and m such
that kn m, do not exceed kF.

As before, the interesting phenomena tend to occur at some-
what extreme values of kFd. Thus, in Fig. 5 we show some results of
using Eq. (34), in the particular case when D D dy z= = . It is well
known that the electrical conductivity of a quantum conductor is a
stepwise function of the bias voltage [25]. We see here, in a
somewhat different connection, that the electrical conductivity of
a thin wire is a stepwise function of the reflectivity R. Furthermore,
it is known that there exists a critical amount of impurity scat-
tering beyond which the conduction electrons are localized and
the conductivity vanishes [26]. In the present case we find a si-
milar phenomenon. For wires that are thin enough, there is a
critical value Rc such that the conductivity is equal to zero for
R Rc> .
Fig. 5. The electrical conductivity of a thin wire of square cross-section of width d
with grain boundaries represented by a one-dimensional regular array of Dirac
deltas also separated by d, in units of the conductivity of a bulk sample having no
grain boundaries, according to the quantum theory [Eq. (34) of this paper].
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6. Effects of weak compositional and structural disorder

We consider now a version of the potential (11) that in-
corporates disorder

V x S m x x/2 ;
35n

n n
2∑ δ( ) = ( ) ( − )

( )

describing an aperiodic array of delta barriers of random strength.
We set S S s1n n= ( + ) and d x x dn n n n1 Δ= − = ++ , defining the
random fluctuations in fractional strength sn around its mean va-
lue S and the random departure Δn from perfect periodicity of the
average crystal. We shall suppose that sn and Δn are random
processes with mean zero and standard deviations s2 and Δ2. Also,
they may be correlated with correlation χ. Thus,

s s s
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Since we assume that the disorder is weak (s a 1n ̂ª¡ and k a 1F nΔ ̂ª¡ ), it
will not be necessary to specify higher moments.

It is known that the transmission TN through N identical cells is

T lexp , 37N loc
1= ( − ) ( )−

where lloc is the rescaled (or adimensional) localization length [27].
Thus, the effect of weak disorder both in grain diameters and in

the scattering strength of grain boundaries can be incorporated in
a conductivity formula. For instance, in the case of a bulk sample
traversed by N grain boundaries, we find that according to the MS
model (19) the conductivity is
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where I(k) and TN are given by (20) and (37) and where, in the
present case, the localization length is found to be
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This is shown in Appendix B.
7. The resistivity of thin tungsten films

Recently, Choi et al. measured the electrical resistivity at
4.2 and 293 K of eight polycrystalline tungsten films, ranging in
thicknesses from 10 to 310 nm and lateral grain size from 74 to
133 nm [14]. They analyzed their results by means of two different
methods. First they tried a combination of Fuchs–Sondheimer (1)
and Mayadas–Shatzkes (2) models, where the resistivities

1/FS FSρ σ= and 1/MS MSρ σ= are combined according to Matthies-
sen's rule FS MSρ ρ ρ= + . The second model is the Mayadas and
Shatzkes equation for polycrystalline films equation (4). In order to
interpret the measurements, both the surface specularity p and the
grain boundary reflectivity R were considered as parameters and
varied so as to best fit the data. The bulk mean free paths at
4.2 and 293 K were prescribed and fixed at 77.7 nm4.2λ = and

16.1 nm293λ = , respectively.
As a result, both methods gave values that were essentially
equivalent. However, there appeared “systematic errors in the fit
that suggest that these models cannot be used with confidence to
describe scaling of the resistivity with film thickness. This (they
found) is specially true for film thicknesses below ∼20 nm.” (Ref.
[14].) Thus, Choi et al. concluded that semiclassical models fail to
describe the resistivity of these nanometric polycrystalline tung-
sten films.

Of course, any formalism based on the Boltzmann transport
equation is an approximation to a reality that should be truly
described only by a quantum mechanical procedure. Thus, both
models assayed by Choi et al. are in fact approximations to an
approximation. In order to test the importance of this fact, we
analyzed this data by a recent formalism that computes the re-
sistivity by a method essentially equivalent to an exact solution
Boltzmann equation [17]. For instance, this procedure takes into
account trajectories of electrons that undergo multiple interface or
grain-boundary scattering events. Furthermore, the method suc-
ceeded in providing fits to the resistivity versus width of thin Cu
[16] and Ag [7] wires. However, the result of this analysis coincides
with that of Choi et al. We found that, assuming the aforesaid
restrictions, no possible combination of p and R could accurately
describe the low values of the resistivity ratio in this case.

We will now describe a full quantum mechanical treatment of
the data of Choi et al. First, we slightly generalized the treatment
in this paper in order to account both for the effects of the scat-
tering by grain boundaries and that of surface roughness. A per-
turbative calculation shows that surface roughness changes the
quantum reflectivity A of the potential barrier describing the sur-
face from the value A¼1, appropriate for a perfectly smooth sur-
face, to

A
k Q
k Q

1
1

,
40

z

z
=

−
+ ( )

where kz is the component of the wave vector perpendicular to the
surface and the distance Q is a known function of the surface
roughness amplitude and its lateral correlation length [28–30,18].
As a result, the wave vector characterizing the sub-bands changes
from k n t/n π= to other (usually complex) value.

Since the details of the surface profile are unknown in this case,
we did assume that Q is a parameter that could be varied freely in
order to find the best fit of data. The other parameter is the
scattering strength S of an individual grain boundary. These are
the quantum counterpart of p and R of the semiclassical treatment.

The result of the fit is shown in Fig. 6. The values of the re-
sulting parameters are listed in Table 1.

It is the case that the quantum and semiclassical descriptions of
the dependence of the conductivity on the mean free path (or the
resistivity on temperature) are qualitatively similar at small values
of the scattering strength of the surface or grain boundaries, but
differ in form in the opposite case. It is this change in form that
causes the quantum treatment to successfully describe — in con-
tradistinction to the semiclassical one — the low value of the re-
sistivity ratio /293 4.2ρ ρ that characterizes the experiment of Choi
et al. [14]

On the other hand, both Q and S represent entities that have
physical existence and can, in principle, be measured. Further-
more, the dependence of the resistivity on temperature for values
of T intermediate between 4.2 and 293 K may be measured in
detail. Thus, there is room for further comparison between the
present theory and reality [18].
8. Conclusions

In this paper we have calculated the conductivity s of



Fig. 6. A tentative fit of the resistivity data of eight thin W films reported by Choi
et al. [14]. Black squares depict experimental data. Colored lines show the values
obtained from the present theory equation (A.12) for values of the parameters S and
Q that best fit the data. The values of these parameters are listed in Table 1. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Table 1
Thicknesses t, lateral grain sizes d, resistivities 4.2ρ and ρ293 at 4.2 K and 293 K,

respectively, of the eight tungsten films reported by Choi et al. [14]. S and Q are the
values of the parameters defining the scattering strength of the grain boundaries
and the surface roughness used in the fits of Fig. 6. We also assume an effective

value of the Fermi wave vector k 15.5 10 mF 9 1= × − . Following Choi et al., the values
of the mean free path λ and bulk resistivity ρ0 are related by

1.01 10 m0
15 2ρ λ = × Ω− . The relation between ρ0 and temperature for W is taken

from Ref. [31].

Film t (nm) d (nm) 4.2ρ ρ293 S (109 m�1) Q (nm)

( cmμΩ )

1 10.3 74 8.5 14.4 3 i9.2 +
2 20.6 90 5.7 11.0 2 i13.8 6+
3 30.8 83 4.7 10.0 2.34 i17 6+
4 41.4 84 4.2 9.4 2.34 i18 6+
5 61.7 95 3.5 8.7 2.34 i21 6+
6 123.4 106 2.8 8.0 7 i50 6+
7 185.1 133 2.4 7.6 7 i23 6+
8 310.2 119 2.1 7.2 7 i21 6+
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polycrystalline metallic samples as a function of the mean grain
diameter d and grain boundary reflectivity R. We have found ex-
plicit formulae for s — Eqs. (19) and (26) for bulk samples, Eq. (30)
for thin films and Eq. (34) for thin wires of rectangular cross-
sections. It is seen that these formulae are only slightly more in-
volved than the well known equations of Fuchs [2] or Dingle [4]
that describe the conductivity of thin films and wires in the ab-
sence of grain boundary scattering. In contradistinction with for-
mer treatments, our calculations are a direct consequence of
Schrödinger equation, by means of Kubo formula [19].

By an extension of this procedure that takes into account the
quantum effects of surface roughness, we attempted also a fit to
the resistivity measurements performed by Choi et al. on thin W
films [14]. However, the result may be objected in two accounts:
First, it is difficult to see why the parameters Q and S would show
such large and unsystematic variation as a function of film thick-
ness as appears in the present Table 1. Furthermore, the calculated
resistivities in Fig. 6 show a distinctly non-linear variation with
temperature. This non-linearity does not agree with the
experimental results shown in p. 76 of Choi's thesis [37]. Clearly,
there remain a number of open issues left for future studies.

It is clear, however, that the present change in outlook has
deeper consequences than a mere improvement in calculating
tools. In the semiclassical picture each grain boundary contributes
to the electrical resistance by scattering a certain fraction of the
incoming electrons. In the quantum conception, there is no such
thing as a partial scattering. There are states (in the allowed
bands) that transmit electrons essentially unhindered, whilst the
electrons in the remaining states (the forbidden bands) are loca-
lized. Thus, changes in the size of the sample, or in the diameter or
reflectivity of grains, can add or remove complete bands; a fact
reflected in the discontinuities in the slope of the conductivity
versus R in the case of thin films, or the stepwise change of the
same function in the case of thin wires. Furthermore, in the case of
thin enough samples and for large enough values of R, all the
electrons become localized and the conductivity drops to zero. As
in other well known cases, this insulating character is due to a
quantum-mechanical mechanism and is not a result of successive
semiclassical encounters in an infinite one-dimensional system
[25,26].

All conductivity formulae interpolate between / 10σ σ = for R¼0
and / 00σ σ = for R¼1. However, we have found (Fig. 1) that the
shape of the interpolation curve can differ greatly according to the
use of a semiclassical or a quantum-mechanical treatment. There
are a number of further general conclusions that disagree with
previous findings. First, we see that the effects of grain boundaries
that run parallel to the current are far from negligible. Also, the
effects on the conductivity of disorder in the scattering strength or
separation between grain boundaries are not small, in contra-
diction with the conclusions of Mayadas and Shtazkes [8]. And,
finally, the electrical conductivity of a given sample depends on its
shape and size, even if it is bounded by perfectly smooth surfaces
(the case p¼1 of the semiclassical treatment).

Recently, a number of important works have been published
that employ a complementary procedure. Instead of using the
methods of mathematical physics [32] — as was done in the past
[2–5,8] and also in this work — the procedure consists in numer-
ical investigations of the detailed structure of surface roughness or
grain boundaries, made of atoms of a specified nature. Once these
structures are determined, the dependence on angle and energy of
the scattering power of the lattice defects can be accurately cal-
culated and their contributions to the electrical resistivity can be
ascertained [33–36]. In this way, this research program functions
as a powerful microscope that allows the determination of the true
properties of these nanometric structures, which are otherwise so
difficult to be put under direct observation.

Physics is a science so vast and rich that there are many tools
available for treating a given problem; and these can be combined
in a variety of proportions. Since atomic-scale modeling are lim-
ited by material constraints to calculations covering around a
dozen atomic layers, probably its principal contribution will be the
determination of the small-scale characteristics of the conduction
processes — for instance, the setting-up of accurate pseudopo-
tentials representing the scattering power of an individual grain
boundary. We note that the Kronig–Penney procedure [23] can be
easily generalized to treat the infinite repetition of any individual
potential. Thus, it is conceivable that the present procedure could
be extended in order to capture the larger-scale quantum me-
chanical effects of these realistic surface and grain boundary
structures [34].
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Appendix A. Thin films limited by rough surfaces

We present here an explicit derivation of the formula for the
electrical conductivity s of a thin polycrystalline film of thickness t
bounded by rough surfaces. The case of perfectly flat surfaces has
been described in Appendix C of Ref. [18]. In the present case,
Green's function is

G
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with x;nψ ξ( ) being the un-normalized wave function for the same
potential equation (17). The normalization constant An is given by
Eq. (23). Also k n,ξ is given by (25).

It is known that these wave functions form an orthogonal and
complete set
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Finally, the wave numbers knm are given by

k k k k ; A.5nm F n m
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2 2= − − ( )ξ

where the meaning of the numbers km will be explained presently.
The wave functions that depend on x and y account for the

effects of grain boundaries. We describe as follows the effect of
roughness at the film's surfaces. First, we assume that the film has
thickness t; so that the range of z is z t0 ≤ ≤ . We suppose, further,
that each electron propagates essentially as a free particle in the z-
direction, except in the immediate neighborhood of the rough
surfaces situated at z¼0 and z¼t; where it is scattered in a way
described by the respective reflectivity amplitudes A0 and At — and
where these amplitudes are chosen in such a way that A A 1t0 = =
describe the specular scattering produced by a plane potential
barrier of infinite strength. Shen et al. [28] have calculated these
amplitudes. They are, in the present notation,
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where the lengths Q0 and Qt are known functions of the respective
roughness profiles [28–30,18].

Alternatively, these scattering properties may be represented
by phase shifts δ0 and δt, defined in terms of the amplitudes by
A iexp 20 0δ= ( ) and A iexp 2t tδ= ( ). In this way, it is found that the
eigenfunctions are

z C k zsin ; A.7m m m m0ϕ δ( ) = ( + ) ( )
and the energy eigenvalues are determined by
k t m m; 1, 2, A.8m m tm0π δ δ= − − = … ( )

where m0δ and δtm are the values taken by δ0 and δt when kz is
replaced by km. The normalization constant is found to be

C t . A.9m m tm
2 1
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− ′ ′

Here k/m k k0 0 mδ δ= ∂ ∂ |′ = and k/tm t k kmδ δ= ∂ ∂ |′ = . Finally, it is found that
the following completeness and normalization condition are valid:
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By replacing the appropriate form of Green's function (A.1) into
the Kubo formula (6), we find that
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The orthogonality conditions (A.3) and (A.10) allow a con-
siderable simplification of the integral I1. It is readily seen that
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The explicit form of the integral I2 is much more involved. We
find that
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It is interesting to calculate the last factor of (A.16) in detail. It is
seen that
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The integrand of the second integral also is periodic with per-
iod d. Thus
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The Wronskian W z x z x,kq kq{ ( ) ( )}(−) (+) and the integral over x can

be readily calculated by hand. The result is
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In the limit of perfectly smooth surfaces, Q Q 0t0 = = and Eq.
(A.8) simplifies to k m t/m π= . Also Hm m, ,δ=μ μ and only the diagonal
terms with k¼q occur in Eq. (A.28). It can be seen that, in this case,
the conductivity (A.12) reduces to the formula (34).
Appendix B. Localization length

Since the particle propagates freely between successive barriers
the wave function, subjected to the potential (35), has the form

x x A e A e ;
B.1n

n n
ik x x

n
ik x xn n∑ψ θ( ) = ( )[ + ]

( )=−∞

∞
+ ( − ) − − ( − )

where xnθ ( ) is equal to one if x x xn n 1< < + and zero otherwise. We
determine the amplitudes An by imposing that the wave function
be continuous at each point xn and that its derivative has a dis-
continuity of magnitude S x ik/n nψ ( ) there. This is expressed by the
recurrence relation
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and d x xn n n1= −+ .
The wave function of a particle propagating in a definite di-

rection (right to left, or left to right) have amplitudes An
˜ +

and An
˜ −

,
respectively. These are obtained by a canonical transformation
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Thus, the recurrence relation is
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The matrix P is such that diagonalizes the unperturbed transfer
matrix. Luna-Acosta et al. [27] have shown that
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and uR, uI, vR, vI denote the real and imaginary parts of u and v,
respectively.

We now set S S s1n n= ( + ) and d dn nΔ= + ; and expand un and
vn up to second order on the small departures sn and Δn from
perfect periodicity. We find that
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If we define A R e in n nθ=± ± , and use (B.5) keeping terms up to
second order in the small quantities kΔn and sn, we find that
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We calculate now the double average ab〈 〉 over the random
departures from perfect periodicity sn and Δn and ab over the ra-
pidly changing phase θn. We perform the first by using (36). In
order to do the average over the random phases we assume — as
usual in a first approximation in cases of spatially uncorrelated
weak disorder — that the underlying probability distribution is
uniform [27]. Thus, for instance,

R ve 0;i2 n( ) =θ
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Proceeding in this way, we find that
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The localization length Lloc is given by [27]

⎛
⎝⎜

⎞
⎠⎟L

d
R
R

1
2

ln .
B.12

loc
n

n

1 1
2

=
( )

− +

Finally, the rescaled localization length lloc is [27]

l L L/ . B.13loc loc
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The explicit form of this formula is Eq. (39).
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